Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).
Google Scholar
Milliken, R. E., Grotzinger J. P. & Thomson B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).
Kite, E. S. & Conway, S. Geological evidence for multiple climate transitions on Early Mars. Nat. Geosci. 17, 10–19 (2024).
Google Scholar
Tutolo, B. M. et al. Carbonates identified by the Curiosity rover indicate a carbon cycle operated on ancient Mars. Science 388, 292–297 (2025).
Google Scholar
Kahn, R. The evolution of CO2 on Mars. Icarus 62, 175–190 (1985).
Google Scholar
Lee, C.-T. A. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–337 (Cambridge Univ. Press, 2020).
Walker, J. C., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).
Google Scholar
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).
Google Scholar
McKay, C. P. & Nedell, S. S. Are there carbonate deposits in the Valles Marineris, Mars? Icarus 73, 142–148 (1988).
Google Scholar
Catling, D. C. A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration. J. Geophys. Res. Planets 104, 16453–16469 (1999).
Google Scholar
Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).
Google Scholar
Bandfield, J. L., Glotch, T. D. & Christensen, P. R. Spectroscopic identification of carbonate minerals in the Martian dust. Science 301, 1084–1087 (2003).
Google Scholar
Edwards, C. S. & Ehlmann, B. L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).
Google Scholar
Bullock, M. A. & Moore, J. M. Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007).
Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).
Google Scholar
Thorpe, M. T. et al. Mars Science Laboratory CheMin data from the Glen Torridon region and the significance of lake‐groundwater interactions in interpreting mineralogy and sedimentary history. J. Geophys. Res. Planets 127, e2021JE007099 (2022).
Google Scholar
Thomas, T. B., Hu, R. & Lo, D. Y. Constraints on the size and composition of the ancient Martian atmosphere from coupled CO2–N2–Ar isotopic evolution models. Planet. Sci. J. 4, 41 (2023).
Google Scholar
Clavé, E. et al. Carbonation of mafic rocks in the Margin Unit, Jezero Crater, Mars. In Tenth International Conference on Mars Vol. 3007, 3161 (Lunar and Planetary Institute, 2024).
Meyer, M. J. et al. Geological context and significance of the clay-sulfate transition region in Mount Sharp, Gale Crater, Mars: an integrated assessment based on orbiter and rover data. Geol. Soc. Am. Bull. https://doi.org/10.1130/B37355.1 (2024).
Milliken, R. E., Ewing, R. C., Fischer, W. W. & Hurowitz, J. Wind‐blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41, 1149–1154 (2014).
Google Scholar
Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Special Publication 102 (eds. Grotzinger J. P. & Milliken R. E.) 1–48 (Society for Sedimentary Geology, 2012).
Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).
Google Scholar
Johnson, B. C., Milliken, R. E., Lewis, K. W. & Collins, G. S. Impact generated porosity in Gale Crater and implications for the density of sedimentary rocks in lower Aeolis Mons. Icarus 366, 114539 (2021).
Google Scholar
Horgan, B. H., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus 339, 113526 (2020).
Google Scholar
Hoehler, T. M. An energy balance concept for habitability. Astrobiology 7, 824–838 (2007).
Google Scholar
Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).
Google Scholar
Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).
Google Scholar
Li, A. Y., Kite, E. S. & Keating, K. The age and erosion rate of young sedimentary rock on Mars. Planet. Sc. J. 3, 246 (2022).
Google Scholar
Lewis, K. W. & Aharonson, O. Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res. Planets 119, 1432–1457 (2014).
Google Scholar
Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).
Google Scholar
Manning, C. V., McKay, C. P. & Zahnle, K. J. Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006).
Google Scholar
Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011).
Google Scholar
Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).
Google Scholar
Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H. & Holmström, M. Ion escape from Mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res. Planets 123, 3051–3060 (2018).
Google Scholar
Lo, D. Y., Yelle, R. V., Lillis, R. J. & Deighan, J. I. Carbon photochemical escape rates from the modern Mars atmosphere. Icarus 360, 114371 (2021).
Google Scholar
Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).
Google Scholar
Andrews‐Hanna, J. C., Zuber M. T., Arvidson R. E. & Wiseman S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. Planets 115, E06002 (2010).
Stanley, B. D., Hirschmann, M. M. & Withers, A. C. Solubility of COH volatiles in graphite-saturated martian basalts. Geochim. Cosmochim. Acta 129, 54–76 (2014).
Google Scholar
Kite, E. S. et al. Changing spatial distribution of water flow charts major change in Mars’s greenhouse effect. Sci. Adv. 8, eabo5894 (2022).
Google Scholar
Madeleine, J. B. et al. Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41, 4873–4879 (2014).
Google Scholar
Salvatore, M. R. & Christensen, P. R. Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology 42, 423–426 (2014).
Google Scholar
Madeleine, J.-B. et al. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203, 390–405 (2009).
Google Scholar
Booth, M. C. & Kieffer, H. H. Carbonate formation in Marslike environments. J. Geophys. Res. Solid Earth 83, 1809–1815 (1978).
Google Scholar
Stephens, S. K. Carbonate Formation on Mars: Experiments and Models. PhD dissertation, California Institute of Technology; https://doi.org/10.7907/PSFY-MZ22 (1995).
Bristow, T. F. et al. Low Hesperian pCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA 114, 2166–2170 (2017).
Google Scholar
Boynton, W. V. et al. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 61–64 (2009).
Google Scholar
Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).
Google Scholar
Williams, K. E., Toon, O. B., Heldmann, J. L. & Mellon, M. T. Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200, 418–425 (2009).
Google Scholar
Warren, A. O., Wilson, S. A., Howard, A., Noblet, A. & Kite, E. S. Multiple overspill flood channels from young craters require surface melting and hundreds of meters of midlatitude ice late in Mars’s history. Planet. Sci. J. 5, 174 (2024).
Google Scholar
Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).
Google Scholar
Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).
Google Scholar
Franz, H. B. et al. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale Crater. Nat. Astron. 4, 526 (2020).
Google Scholar
Martin, P. E. et al. A two‐step K–Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122, 2803–2818 (2017).
Google Scholar
Halevy, I. & Schrag, D. P. Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophys. Res. Lett. 36, L23201 (2009).
Morris, R. V. et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421–424 (2010).
Google Scholar
Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).
Google Scholar
Ingersoll, A. P. Mars: occurrence of liquid water. Science 168, 972–973 (1970).
Google Scholar
Stanley, B. D., Hirschmann, M. M. & Withers, A. C. CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011).
Google Scholar
Graham, R. J. High pCO2 reduces sensitivity to CO2 perturbations on temperate, Earth-like planets throughout most of habitable zone. Astrobiology 21, 1406–1420 (2021).
Google Scholar
Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F., & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).
Google Scholar
Mansfield, M., Kite, E. S. & Mischna, M. A. Effect of Mars atmospheric loss on snow melt potential in a 3.5 Gyr Mars climate evolution model. J. Geophys. Res. Planets 123, 794–806 (2018).
Google Scholar
Arvidson, R. E. et al. Spirit Mars rover mission: overview and selected results from the northern Home Plate Winter Haven to the side of Scamander Crater. J. Geophys. Res. Planets 115, E00F03 (2010).
Hausrath, E. M. et al. An examination of soil crusts on the floor of Jezero Crater, Mars. J. Geophys. Res. Planets 128, e2022JE007433 (2023).
Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. Planets 111, E02S11 (2006).
Chojnacki, M. et al. Ancient Martian aeolian sand dune deposits recorded in the stratigraphy of Valles Marineris and implications for past climates. J. Geophys. Res. Planets 125, e2020JE006510 (2020).
Google Scholar
Edgett, K. S. & Sarkar, R. Recognition of sedimentary rock occurrences in satellite and aerial images of other worlds—insights from Mars. Remote Sens. 13, 4296 (2021).
Google Scholar
Allen, P. A. & Allen, J. R. Basin Analysis: Principles and Applications (Blackwell Publishing, 2005).
Kahre, M. A. et al. in The Atmosphere and Climate of Mars (eds Haberle, R. et al.) 295–337 (Cambridge Univ. Press, 2017).
Bridges, N. T. & Muhs, D. R. in Sedimentary Geology of Mars Special Publication 102 (eds Grotzinger J. & Milliken R.) 169–182 (Society for Sedimentary Geology, 2012).
Bridges, N. T. et al. Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).
Google Scholar
Bradley, B. A., Sakimoto, S. E., Frey, H. & Zimbelman, J. R. Medusae Fossae formation: new perspectives from Mars global surveyor. J. Geophys. Res. Planets 107, 2-1–2-17 (2002).
Google Scholar
Hynek, B. M. & Di Achille, G. Geologic Map of Meridiani Planum, Mars SI-3356 (US Geological Survey, 2017).
Tanaka, K. L. et al. Geologic Map of Mars SIM-3292 (US Geological Survey, 2014).
Bennett, K. A. & Bell, J. F. III A global survey of Martian central mounds: central mounds as remnants of previously more extensive large-scale sedimentary deposits. Icarus 264, 331–341 (2016).
Google Scholar
Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).
Google Scholar
Salese, F. et al. Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record. Nat. Commun. 11, 2067 (2020).
Google Scholar
Bandfield, J. L., Edwards, C. S., Montgomery, D. R. & Brand, B. D. The dual nature of the martian crust: young lavas and old clastic materials. Icarus 222, 188–199 (2013).
Google Scholar
Stack, K. M. Reconstructing Past Depositional and Diagenetic Processes through Quantitative Stratigraphic Analysis of the Martian Sedimentary Rock Record. PhD thesis, California Institute of Technology (2015).
Milliken, R. E., Fischer, W. W. & Hurowitz, J. A. Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009).
Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689 (2001).
Google Scholar
Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29, 32-1–32-4 (2002).
Google Scholar
Kite, E. S., Lucas, A. & Fassett, C. I. Pacing early Mars river activity: embedded craters in the Aeolis Dorsa region imply river activity spanned ≳(1–20) Myr. Icarus 225, 850–855 (2013).
Google Scholar
Kite, E. S., Sneed, J., Mayer, D. P. & Wilson, S. A. Persistent or repeated surface habitability on Mars during the late Hesperian‐Amazonian. Geophys. Res. Lett. 44, 3991–3999 (2017).
Google Scholar
Kite, E. S. & Noblet, A. High and dry: billion‐year trends in the aridity of river‐forming climates on Mars. Geophys. Res. Lett. 49, e2022GL101150 (2022).
Google Scholar
Annex, A. M. & Lewis, K. W. Constraining the duration and ages of stratigraphic unconformities on Mars using exhumed craters. J. Geophys. Res. Planets 129, e2023JE008073 (2024).
Google Scholar
Grant, J. A. & Wilson S. A. Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011).
Holo, S. J., Kite, E. S., Wilson, S. A. & Morgan, A. M. The timing of alluvial fan formation on Mars. Planet. Sci. J. 2, 210 (2021).
Google Scholar
Foley, K. K., Lyons, W. B., Barrett, J. E. & Virginia, R. A. in Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (eds Alonso-Zarza, A. M. & Tanner, L. H.) 89–104 (Geological Society of America, 2006).
Head, J. W. III, Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. Planets 107, 3-1–3-29 (2002).
Google Scholar
Kite, E. S., Matsuyama, I., Manga, M., Perron, J. T. & Mitrovica, J. X. True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280, 254–267 (2009).
Google Scholar
Jakosky, B. M. & Carr, M. H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985).
Google Scholar
Mischna, M. A., Richardson, M. I., Wilson, R. J. & McCleese, D. J. On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. Planets 108, 5062 (2003).
Steele, L. J., Balme, M. R. & Lewis, S. R. Regolith-atmosphere exchange of water in Mars’ recent past. Icarus 284, 233–248 (2017).
Google Scholar
Kerber, L., Head, J. W., Madeleine, J.-B., Forget, F. & Wilson, L. The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219, 358–381 (2012).
Google Scholar
Turbet, M. & Forget, F. The paradoxes of the Late Hesperian Mars ocean. Sci. Rep. 9, 5717 (2019).
Google Scholar
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
Google Scholar
Armstrong, J. C., Leovy, C. B. & Quinn, T. A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004).
Google Scholar
Holo, S. J., Kite, E. S. & Robbins, S. J. Mars obliquity history constrained by elliptic crater orientations. Earth Planet. Sci. Lett. 496, 206–214 (2018).
Google Scholar
Catling, D. C. in Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.) 66–75 (Springer, 2009).
Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).
Google Scholar
Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 (2001).
Google Scholar
Gil-Lozano, C. et al. The key role of bedrock composition in the formation of carbonates on Mars. Geochem. Perspect. Lett. 28, 54–59 (2024).
Google Scholar
Dong, C. et al. Modeling Martian atmospheric losses over time: implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett. 859, L14 (2018).
Google Scholar
Jakosky, B. M. & Edwards, C. S. Inventory of CO2 available for terraforming Mars. Nat. Astron. 2, 634–639 (2018).
Google Scholar
Buhler, P. B. & Piqueux, S. Obliquity‐driven CO2 exchange between Mars’ atmosphere, regolith, and polar cap. J. Geophys. Res. Planets 126, e2020JE006759 (2021).
Google Scholar
Ueno, Y. et al. Synthesis of 13C-depleted organic matter from CO in a reducing early Martian atmosphere. Nat. Geosci. 17, 503–507 (2024).
Koyama, S. et al. Stable carbon isotope evolution of formaldehyde on early Mars. Sci. Rep. 14, 21214 (2024).
Google Scholar
Stern, J. C. et al. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc. Natl Acad. Sci. USA 119, e2201139119 (2022).
Google Scholar
Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).
Google Scholar
Khuller, A. R., Christensen, P. R. & Warren, S. G. Spectral albedo of dusty Martian H2O snow and ice. J. Geophys. Res. Planets 126, e2021JE006910 (2021).
Google Scholar
Clow, G. D. Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus 72, 95–127 (1987).
Google Scholar
Khuller, A. R. & Clow, G. D. Turbulent fluxes and evaporation/sublimation rates on Earth, Mars, Titan, and exoplanets. J. Geophys. Res. Planets 129, e2023JE008114 (2024).
Google Scholar
Halevy, I., Pierrehumbert, R. T. & Schrag, D. P. Radiative transfer in CO2‐rich paleoatmospheres. J. Geophys. Res. Atmos. 114, D18112 (2009).
Dundas, C. M. & Byrne, S. Modeling sublimation of ice exposed by new impacts in the Martian mid-latitudes. Icarus 206, 716–728 (2010).
Google Scholar
Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation. J. Geophys. Res. Planets 98, 3093–3123 (1993).
Google Scholar
Kahre, M. A., Murphy, J. R. & Haberle, R. M. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. Planets 111, E06008 (2006).
Kite, E. Supplementary data for “Carbonate formation and fluctuating habitability on Mars”. Zenodo https://doi.org/10.5281/zenodo.11489512 (2024).
Rodriguez, J. A. P. et al. Did the Martian outflow channels mostly form during the Amazonian Period? Icarus 257, 387–395 (2015).
Google Scholar